skip to main content


Search for: All records

Creators/Authors contains: "Morishita, Takahiro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 15, 2024
  2. null (Ed.)
    ABSTRACT We measure the size–mass relation and its evolution between redshifts 1 < z < 3, using galaxies lensed by six foreground Hubble Frontier Fields clusters. The power afforded by strong gravitation lensing allows us to observe galaxies with higher angular resolution beyond current facilities. We select a stellar mass limited sample and divide them into star-forming or quiescent classes based on their rest-frame UVJ colours from the ASTRODEEP catalogues. Source reconstruction is carried out with the recently released lenstruction software, which is built on the multipurpose gravitational lensing software lenstronomy. We derive the empirical relation between size and mass for the late-type galaxies with $M_{*}\gt 3\times 10^{9}\, \mathrm{M}_{\odot }$ at 1 < z < 2.5 and $M_{*}\gt 5\times 10^{9}\, \mathrm{M}_{\odot }$ at 2.5 < z < 3, and at a fixed stellar mass, we find galaxy sizes evolve as $R \rm _{eff} \propto (1+z)^{-1.05\pm 0.37}$. The intrinsic scatter is <0.1 dex at z < 1.5 but increases to ∼0.3 dex at higher redshift. The results are in good agreement with those obtained in blank fields. We evaluate the uncertainties associated with the choice of lens model by comparing size measurements using five different and publicly available models, finding the choice of lens model leads to a 3.7 per cent uncertainty of the median value, and ∼25  per cent scatter for individual galaxies. Our work demonstrates the use of strong lensing magnification to boost resolution does not introduce significant uncertainties in this kind of work, and paves the way for wholesale applications of the sophisticated lens reconstruction technique to higher redshifts and larger samples. 
    more » « less
  3. Abstract

    We report the discovery of an extremely magnified star at redshiftz= 2.65 in the James Webb Space Telescope (JWST) NIRISS pre-imaging of the A2744 galaxy-cluster field. The star’s background host galaxy lies on a fold caustic of the foreground lens, and the cluster creates a pair of images of the region close to the lensed star. We identified the bright transient in one of the merging images at a distance of ∼0.″15 from the critical curve by subtracting the JWST F115W and F150W imaging from coadditions of archival Hubble Space Telescope (HST) F105W and F125W images and F140W and F160W images, respectively. Since the time delay between the two images should be only hours, the transient must be the microlensing event of an individual star, as opposed to a luminous stellar explosion that would persist for days to months. Analysis of individual exposures suggests that the star’s magnification is not changing rapidly during the observations. From photometry of the point source through the F115W, F150W, and F200W filters, we identify a strong Balmer break, and modeling allows us to constrain the star’s temperature to be approximately 7000–12,000 K.

     
    more » « less
  4. null (Ed.)
    ABSTRACT We report upon 3 years of follow-up and confirmation of doubly imaged quasar lenses through imaging campaigns from 2016 to 2018 with the Near-Infrared Camera2 (NIRC2) on the W. M. Keck Observatory. A sample of 57 quasar lens candidates are imaged in adaptive-optics-assisted or seeing-limited K′-band observations. Out of these 57 candidates, 15 are confirmed as lenses. We form a sample of 20 lenses adding in a number of previously known lenses that were imaged with NIRC2 in 2013–14 as part of a pilot study. By modelling these 20 lenses, we obtain K′-band relative photometry and astrometry of the quasar images and the lens galaxy. We also provide the lens properties and predicted time delays to aid planning of follow-up observations necessary for various astrophysical applications, e.g. spectroscopic follow-up to obtain the deflector redshifts for the newly confirmed systems. We compare the departure of the observed flux ratios from the smooth-model predictions between doubly and quadruply imaged quasar systems. We find that the departure is consistent between these two types of lenses if the modelling uncertainty is comparable. 
    more » « less
  5. null (Ed.)
    ABSTRACT One of the main challenges in using high-redshift active galactic nuclei (AGNs) to study the correlations between the mass of a supermassive black hole ($\mathcal {M}_{\rm BH}$) and the properties of its active host galaxy is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed AGNs with deep Hubble Space Telescope imaging, using the lens modelling code lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. $\mathcal {M}_{\rm BH}$ are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGNs, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGNs is small and thus they provide mostly a consistency check on systematic errors related to resolution for non-lensed AGNs. However, the number of known lensed AGNs is expected to increase dramatically in the next few years, through dedicated searches in ground- and space-based wide-field surveys, and they may become a key diagnostic of black holes and galaxy co-evolution. 
    more » « less
  6. Abstract The gravitationally lensed star WHL 0137–LS, nicknamed Earendel, was identified with a photometric redshift z phot = 6.2 ± 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8–5.0 μ m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to μ > 4000 and restricting the source plane radius further to r < 0.02 pc, or ∼4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T eff ≃ 13,000–16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log ( L ) = 5.8 to 6.6 L ⊙ , which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe. 
    more » « less
  7. One of the main challenges in using high redshift active galactic nuclei to study the correlations between the mass of the supermassive Black Hole (MBH) and the properties of their active host galaxies is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed active galactic nuclei (AGN) with deep Hubble Space Telescope imaging, using the lens modelling code Lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. MBH are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGN, providing additional evidence that the correlation evolves over cosmic time. At the moment, the sample size of lensed AGN is small and thus they provide mostly a consistency check on systematic errors related to resolution for the non-lensed AGN. However, the number of known lensed AGN is expected to increase dramatically in the next few years, through dedicated searches in ground and space based wide field surveys, and they may become a key diagnostic of black hole and galaxy co-evolution. 
    more » « less